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A review of certain aspects of the theory and computation of resonance states is pre-
sented, from the point of view of the work by the author and his colleagues in atomic
physics. Two issues are mainly discussed: one is the understanding and ab initio cal-
culation of resonance states of real systems from a time-dependent point of view.
The other is the derivation and application of thecomplex eigenvalue Schrödinger
equation from a superposition of the localized wave packet90 with the orthogo-
nal to it scattering wave functionsϕ(E), when outgoing-wave boundary conditions
are imposed. It is shown how two complex adjoint solutions, the hallmark of res-
onance state theory, correspond to the Fano solution for a resonance state on the
real energy axis, obtained from the application of Hermitian quantum mechanics.
The forms of the complex eigenfunctions are used for non-Hermitian calculations
of resonance states in polyelectronic atoms. The question of time-asymmetry at the
quantum level is tackled by observing that the time-evolution has to be considered
with boundary conditionst ≥ 0 and∞ > E > 0 and a complex energy distribu-
tion given by the diagonal matrix element of the Green’s function with respect to
90. Using a model whereby the self-energy of the decaying state,A(z), is approxi-
mated byA(z) ≈ A(E0) , whereE0 = 〈90|H |90〉, it is shown that time-asymmetry,
if present as defined in this work, should have an effect on the as yet unobserved
long-time deviation from exponential decay. Although not described explicitly, it is
indicated, via the forms of the trial wave functions and via the references, how poly-
electronic calculations have been carried out, for field-free resonance states as well as
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for resonance states that are created by the presence of an external electromagnetic
field.

KEY WORDS: resonances; localization; complex eigenvalues; time-dependence;
nonexponential decay.

1. INTRODUCTION

The excitation of polyelectronic atoms to energies above their first ionization
threshold produces structures inside the continuous spectrum which are associated
with resonance (or, “autoionizing,” or “Auger” or “compound”) states. The con-
cept of a resonance state and its properties appears in various physical situations,
from atoms to elementary particles, and so it has been investigated extensively
over many decades. In the case of atoms, the Hamiltonian is known, even when
relativistic corrections must be included. So atomic physics is suitable for testing
formalisms concerning resonance states. This testing cannot, of course, stop with
phenomenology. Rather, the formalism must have a simple and flexible structure
so as to provide not only rigorous understanding of the concepts and the related
quantities but also to allow their systematic computation in conjunction with suit-
ably developed many-body theory. Fortunately, in atomic physics the accuracy
of measurements of the effects of resonance states on observables can be high,
thereby placing theory under stringent conditions.

The present paper reviews aspects of the work on atomic, field-free and
field-dressed, resonance states by the author and his colleagues since 1972, by
examining issues of concepts and fundamental physics as well as of practical
calculations. Only a few essentials are gleaned. For complete descriptions, ap-
plications and additional references, the reader is referred to (e.g., Bylicki and
Nicolaides, 2002; Haritoset al., 2001; Mercouriset al., 2001; Mercouris and
Nicolaides, 1990, 1997, 2001, 2002; Nicolaides, 1972; Nicolaideset al., 1981,
1990, 1993; Nicolaides and Beck, 1977a,b, 1978a,b; Nicolaides and Gotsis, 1992;
Nicolaides and Mercouris, 1985, 1996; Nicolaides and Piangos, 2001; Nicolaides
and Themelis, 1992; Themelis and Nicolaides, 2000, 2001). In this context, one
may wonder about the possible advantages of computing resonance states directly
in a time-independent framework, rather than obtaining the same information
by determining the relevant transition amplitudes. One advantage is the fact that
by solving directly for the complex eigenvalues, of the resonance states, very
small widths of real states can be established within a nonperturbative frame-
work, thereby allowing identification of new states where other theories fail (e.g.,
Bylicki and Nicolaides, 2002). Also, solving for the appropriate complex eigen-
value in field-dressed problems allows the all-orders (nonperturbative) calculation
of physical properties, such as multiphoton ionization rates of atoms in strong
fields (Haritoset al., 2001; Mercouriset al., 2001; Mercouris and Nicolaides,
1990, 2001). We point out that the herein reviewed framework for the solution
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of problems involving nonstationary states has also been applied to molecular
systems, a topic which is outside the scope of this paper (e.g., Petsalakiset al.
1990).

2. THE COMPLEX EIGENVALUE SCHR ÖDINGER EQUATION F̀OR
RESONANCE STATES

2.1. Superposition of Wave Functions in the Continuous Spectrum Fano’s
Standing Wave Solution

Fundamental to the existence and description of an isolated resonance state is
the formation of a localized wave packet,90, at t = 0. This formation breaks the
continuity fromt = −∞ to t = +∞ of the overall reaction or scattering process
and introduces the concept of a decaying state, provided the lifetime of this state (for
its definition see below), is much longer than the excitation–interaction mechanism.
Heuristic arguments as to the existence and significance of90 and methods for its
consistent calculation to a high degree of accuracy in excited atomic systems, are
discussed in the references already cited. The formation of90 implies the beginning
of a nonstationary process of decay with the initial condition9(t = 0)≡ 90. The
time-evolution is caused by the interaction of90 with the (formally) orthogonal to
it scattering wave functions,ϕ(E), via the Hamiltonian,H , of the system. Neither
90 nor ϕ(E) are stationary eigenstates ofH . Such a stationary state,9(E), is a
superposition of90 andϕ(E) with energy dependent probability amplitudes:

9(r ; E) = a(E)90(r )+
∫

bE(E′)ϕ(r ; E′)d E′ (1)

Fano (1961) obtained the coefficientsa(E) andbE for boundary conditions
of a standing wave, i.e., for real functions. To do so, he followed the method
of Dirac (Section 50 of Dirac, 1958), whereby the division by (E − E′) in the
continuous spectrum introduces an unknown function,λ(E), which is determined
by the boundary conditions. In this way, Fano (1961) obtained

λ(E) = E − E0−1(E)

|V(E)|2 (2)

and

|a(E)|2dE= 1

2π

0(E)

(E − E0−1(E))2+ 02(E)
4

dE (3)

where,

〈90|H |ϕ(E)〉 ≡ V(E), E0 = 〈90|H |90〉 (4)

0(E) = 2π |V(E)|2 (the energy width) (5a)
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and

1(E) = P.V.
∫

dE′
|V(E)|
E − E′

(the energy shift). (5b)

P.V. stands for principal value. The probability distribution in the energy spectrum,
|a(E)|2, is equal to|〈9(E)|90〉|2. Its form is the result of energy normalization of
9(E), satisfying

H9(r ; E) = E9(r ; E), 〈9(E)|9(E′)〉 = δ(E − E′), (6)

and has the property that it is normalized to one∫
dE|a(E)|2 =

∫
dE|〈90|9(E)〉|2 ≡

∫
dEg(E) = 1 (7)

The structure of Fano’s treatment is Hermitian and time symmetric. It uses real
functions and real energies. The standing wave boundary conditions imply the
use of the HermitianK -matrix rather than theS-matrix5 (Goldberger and Watson,
1964; Newton, 1982). The position of the resonance is given byEr = E0+1(Er )
and is found by solving self-consistently the transcendental equation (numerator
of Eq. (2))

E − E0−1(E) = 0. (8)

Indeed, such calculations have been carried out for a variety of polyelectronic
resonance states, even for those with multiply excited electronic structures, where,
in addition, total as well as partial widths were obtained (Nicolaideset al., 1993;
Nicolaides and Piangos, 2001). Crucial to such many-body calculations is the
computation of accurate90 andE0. (More on90 in Section 5).

The energy distribution,g(E), is real and drives the survival amplitudeG(t):

G(t) = 〈90|e−i Ht |90〉 =
∫

dE|〈9(E)|90〉|2e−i Et ≡
∫

dEg(E)e−i Et (9)

where the integral over energy is obtained by inserting the Hermitian unit operator
of the stationary states,I = ∫ dE|9(E)〉〈9(E)|. The significant relevant property
of g(E) is that it has complex poles atz0 andz∗0 (Eqs. (10), (16), and (21)) and
that it does not differentiate between positive and negative times(Nicolaides and
Beck, 1977, 1978, p. 492).

5 Even though in the discussions on resonance states the emphasis has been onS-matrix-type theories,
the use ofK -matrix type formalism, with its Hermitian structure, can have advantages. For example,
for real multiparticle systems, such as the polyelectronic atoms, where scattering theory must be
combined with the particularities of the many-body problem, it is possible to unite, formally and
computationally, within theK -matrix formalism, properties of the discrete and of the continuous
spectrum, using basis sets of bound and scattering functions. (Komninoset al., 1995; Komninos and
Nicolaides, 1987; Sinaniset al., 1998).
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2.2. Superposition of Wave Functions in the Continuous
Spectrum: Traveling Wave Solutions

As is well known from the theory of scattering (Dirac, 1958; Goldberger,
and Watson, 1964; Newton, 1982), the alternative to standing wave boundary
conditions is the use of traveling waves. Then, one obtains two Green’s functions,
one for the “in” and one for the “out” state. These are time-reversed and both
are needed to secure unitarity of the S-matrix. I will show how the solution of
the problem of Eqs. (1) and (6) produces naturally and rigorously two complex
eigenvalue Schr¨odinger equations (CESE) with adjoint solutions,9(r ; z0) and
9 t (r ; z∗0), one corresponding to a decaying state and one to a growing state for
t ≥ 0, when outgoing and incoming wave boundary conditions are imposed. In
doing so, no definitions or assumptions anticipating the result are made. In this
way, the real energy, Hermitian problem on the real energy axis, incorporating
information fort > 0 as well as fort < 0, is split into two complex eigenvalue non-
Hermitian problems, each being the time-reversed of the other. The two complex
eigenvalues are obtained below as

z0 = E0+1− i

2
0, z∗0 = E0+1+ i

2
0 (10)

where1 and0 are defined in terms of the matrix elements of eqs. (5) at the solution
of eq. (8),Er = E0+1(Er ) = R(z0) = R(z∗0). It is then clear thatEr , z0 andz∗0
have as their reference point the real energyE0.

By solving formally for the coefficientbE, the9(r ; E) of Eq. (1) can be
written as

9(r ; E) = a(E)

[
90(r )+ P.V.

∫
dE′

V(E′)
E − E′

ϕ(r ; E′)+ λ(E)V(E)ϕ(r ; E′)
]
(11)

where the unknown functionλ(E) is to be defined by the boundary conditions of
the physical problem of interest. In the case of the decaying state, fort ≥ 0 the
boundary conditions are those of regularity at the origin and of an asymptotically
outgoing wave with no incoming part. The opposite is true for the adjoint state,
namely we have an incoming wave with no outgoing part. Since it is ther →∞
region that matters, it is the asymptotic form ofϕ(E) that enters Eq. (11), depending
on the scattering potentials of interest. For example, for the linear potential, (effect
of an electric field), one has the Airy function, for the Coulomb potential the
Coulomb function and for the short-range potential, used in nuclear physics and in
atomic negative ions, the Bessel function. By substituting these asymptotic forms
into Eq. (11) and by carrying out the required algebraic manipulations,9(r ; E)
in the asymptotic region acquires the following form (the terma(E)90(r ) goes to
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zero forr →∞):

9(r ) ≈
r→∞ −

√
π

2k
V a

[(
1− λ(E)

iπ

)
ei N +

(
1+ λ(E)

iπ

)
e−i N

]
(12)

where ther -dependentN stands for the slightly different result for each potential.
The conclusion is immediate: Eq. (12) contains both an outgoing wave,ei N , (de-
caying state fort ≥ 0), and an incoming wave,e−i N , (unphysical, growing state).
In order for only one or the other to survive,λ(E) must be

λ(E) = −iπ outgoing wave boundary condition (13a)

λ(E) = +iπ incoming wave boundary condition (13b)

Therefore, by combining the expression forE, Eq. (2),

E = E0+1(E)+ λ(E)|V(E)|2, (14)

with Eqs. (13), one obtains directly the corresponding complex eigenvalues of
Eq. (10). Furthermore, one also obtains the exact form for the asymptotic part of
the resonance eigenfunction, which, using Eqs. (12) and (13a), is

9(r ; z0) ∼ −V a

√
2π

kr
ei N (15)

wherea is the complex coefficient of90 andkr is the complex momentum, (2z0)1/2.
The combination of Eqs. (11) and (15) yields the form of the resonance eigenfunc-
tion over the full coordinate space. It follows that, under the boundary conditions
extracted from Eq. (12) when either (13a) or (13b) are applied, the standing wave
real eigenvalue Schr¨odinger equation (6) is converted into two complex eigenvalue
Schrödinger equations (CESE) for the two adjoint states:

(H − z0)9(r ; z0) = 0, outgoing wave condition (16a)

(H − z∗0)9†(r ; z∗0) = 0, incoming wave condition (16b)

The non Hermitian CESEs (16) involve complex eigenfunctions that are not square-
integrable and do not belong to, or constitute elements of, Hilbert space. Considered
separately, each solution is a manifestation of nonunitarity, brought about by the
fact that due to the formation of90, there is a singularity att = 0 when the TDSE
is used to determine the physics. This breakdown of continuity creates the two
solutions of Eqs. (16). When the parameter of time is introduced, then fort ≥ 0
one of these states is physical, representing the decay, and one, its adjoint state, is
unphysical. The use of these states in defining the norm of time-dependent wave
functions is demonstrated below. I add here that the above treatment and derivation
has led to the following relations which have been used as constraints for the
optimization of trial resonance wave functions. The first has used the expectation
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values ofH and ofH2 (Nicolaides and Beck, 1978a,b): From Eq. (16) it follows
that

I (z0) = 〈9(z0|H2|9(z0〉
〈9(z0|9(z0〉 = z2

0 (17)

Then,

R(I (z0) = E2− 1

4
02 (18a)

F(I (z0) = −E0 (18b)

Application of these equations to the calculation of the Stark effect in Hydrogen
was presented in (Nicolaides and Gotsis, 1992).

The other relation is obtained from the form of the resonance wave function,
and relates the mixing coefficients a and b to the width and the complex momentum
(Nicolaideset al., 1981; Nicolaides and Mercouris, 1985). Thus, the coefficient
b(z0), representing the flux of emitted particles, is equal to

|b|2 = |a|2 0|kr | (19)

In Eq. (19), I used the total width,0, and the complex momentum,kr . However, the
same relation holds for each partial width separately. Application to the calculation
of single- and multichannel decaying states is described in Nicolaideset al.(1981)
and Nicolaides and Mercouris (1985).

3. NORMS AND ENERGY DISTRIBUTIONS

For a purely scattering state, the energy distribution on the real energy axis is
just the Diracδ function. In the case of the Fano resonance state, the requirement
that9(E) of Eq. (1) is normalized as in Eq. (6), produces the exact form of the
real energy distribution as Eq. (3). In this treatment, the usual rules of Hermitian
quantum mechanics apply, unitarity is satisfied and the formalism and results con-
tain information for botht ≥ 0 andt ≤ 0. However, if we consider the sectionally
analytic resolvent operatorR(z) ≡ (z− H )−1 with z complex, and obtain from it
the two diagonal Green’s functions defined above and below the cut of the real
axis (Goldberger and Watson, 1964; Newton, 1982):

〈90|R(z)|90〉 =
{

dG+(E − H + i 0)−1 = dG+(E)
dG−(E − H + i 0)−1 = dG−(E)

(20)

then, it is their combination which equalsg(E):

g(E) = 1

2π i
[dG−(E)− dG+(E)] = ∓ 1

π
F(dG±(E)) (21)
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If only one of the two complex Green’s functions is considered, whose analytic
continuation through the cut of the real axis yields the polez0 on the second sheet,
(or z∗0 for the other function), the hallmark of resonance state theory, then no unit
normalization is obtained. Unit normalization of the real energy distribution holds
only for Hermitian systems.

If we use the standing wave solution,9(r ; E), in order to construct the time-
dependent wave function,9(r ; E, t) = 9(r ; E)e−i Et , the norm is one for allt :

〈9(t)|9(t)〉 =
∫

dE
∫
9∗(r ; E)ei Et9(r ; E)e−i Etdr = 1 (22)

On the other hand, the following values for the norms are obtained when consid-
ering the use of the resonance eigenfunction:

1. If only the decaying state solution is used, then flux is not conserved since
decay occurs. This is seen by assuming the form of the time-dependent
resonance eigenfunction to be

9(r ; z0, t) = 9(r ; z0)exp(−i z0t). (23)

Then, ∫
9∗(r ; z0, t)9(r ; z0, t)dr

= {exp[(z∗0 − z0)i t ]}
∫
9∗(r ; z0)9(r ; z0)dr

= e−0t
∫
9∗(r ; z0)9(r ; z0)dr (24)

Eq. (24) demonstrates the exponential decay, under the assumption of
Eq. (23). The resolution of the problem that the integral over space is
infinite, is discussed below.

2. The second type of norm is the one that has to show conservation of
flux for the whole system, just like the norm of Eq. (22) shows. Follow-
ing the line of argument about the equivalence between the one solution
on the real axis with both solutions in the complex plane, it is evident that
the flux-conservingnorm must involve both the decaying state and its
adjoint,9†(r ; z∗0). In this case,∫

9†(r ; z∗0, t)9(r ; z0, t)dr = {exp[(z0− z0)i t ]}
∫
9(r ; z0)9(r ; z0)dr

=
∫
9(r ; z0)9(r ; z0)dr (25)

Hence, the use of both eigenfunctions of Eq. (16) produces a norm which is
independent of time. Furthermore, Eq. (25) shows a characteristic feature of the
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properties of resonance states represented by complex eigenfunctions, namely
that the integral over position space involves the square of the function itself and
not of its absolute value. Again, this integral is infinite.

3.1. Normalization ofΨ(r; z0) and Calculation of Ψ(r; zo) and of z0

As it was recognized already in 1928, as soon as the Gamow outgoing wave
was introduced (Gamow, 1928), matrix elements involving functions with such
asymptotic behavior cannot be defined in position space. Since the reliable solu-
tion of Eq. (16a) presupposes the possibility of dealing effectively with all dif-
ficulties of the many-body problem and open channel mixing, the lack of norm
in the usual sense reduced for many decades the possibility and/or the interest
in tackling problems of resonance states as a complex eigenvalue problem. For
example, Kemble (1937), in his book on quantum mechanics, briefly discussed
this issue and conjectured the possibility of defining a new norm by introduc-
ing the attenuating factor exp(−arn). This idea, and further analysis using short
range potentials, was much later examined by Zel’dovich (1961) and Berggren
(Berggren, 1968). In fact, a simple and practical solution to the norm problem was
provided in 1961 by Dykhne and Chaplik (1961) by extending integration into the
upper half of complex coordinate plane, i.e., by changing r intorei θ . They showed
that for the simple model used by Zel’dovich, the same norm is obtained. They
concluded thatin spite of the fact that the wave functions vanish at infinity, the
energy values are complex because of the non-Hermitian character of the Hamil-
tonian in V(the volume of integration). About a decade later, the same result was
obtained in a mathematical language which analyzed the spectral properties of
the rotated Coulomb HamiltonianH (θ ) = e−2i θT + e−i θV in the Hilbert space
of L2 functions (Aguilar and Combes, 1972; Balslev and Combes, 1972). It was
shown that the complex eigenvalues ofH (θ ) correspond to the second sheet poles
of the resolvent, i.e., to resonance states. Even though the mathematical proofs of
(Aguilar and Combes, 1972; Balslev and Combes, 1972) concerned the Coulomb
Hamiltonian, it has since become clear thatcomplex scalingof the Hamiltonian
coordinates works for other situations as well, including models, (Moiseyev, 1998
and references therein).

However, for the many-body problem in real systems, and for the calculation
of partial widths to all orders, the use of complex-scaled Hamiltonians in conjunc-
tion with single sets of square-integrable functions runs into trouble. As a solution,
we have proposed and implemented a many-electron (for field-free) or a many-
electron, many-photon (for field-dressed states) theory, where the coordinates of
the Hamiltonian are real. It is the function spaces that are chosen appropriately so
as to follow the two-part form of the resonance wave function discussed in this
section. This means that there is oneL2 space which consists of real functions with
real coordinates (the undecayed part) and anotherL2 space consisting of both real
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and complex functions (the decayed part)—see Eq. (27) below. The theory em-
phasizes the use of optimized spaces for these two parts, whether for isoated or for
strongly coupled states. Lack of space does not allow the presentation of the related
methodologies and results. So the reader is referred to (Bylicki and Nicolaides,
2002; Haritoset al., 2001; Mercouriset al., 2001; Mercouris and Nicolaides, 1990,
2001; Nicolaideset al., 1981; Nicolaides and Beck, 1977a,b, 1978a,b; Nicolaides
and Gotsis, 1992; Nicolaides and Mercouris, 1985; Nicolaids and Themelis, 1992;
Themelis and Nicolaides, 2000, 2001) for essential information and applications.
Here I give only two formulae, which contain the basic idea of introducing the non-
Hermiticity via the proper choice of the function space rather than via the scaling
of the Hamiltonian coordinates. The first is Eq. (3) of Nicolaides and Beck, 1978a,
which emphasizes the fact that it is only the asymptotic part of the resonance wave
function that has to be dealt with special methods. Thus the norm was defined as∫

all space
92dr =

∫ R

0
92dr =

∫
C
92dr (26)

where R is a point on the real axis at the edge of the inner region and R
R < R(s) < ∞. This type of regularization, which has since been namedexterior
scaling, has been applied analytically and numercally to a number of different po-
tentials e.g., Nicolaideset al., (1990). The second formula concerns the form of the
multiparticle resonance wave function. For an isolated resonance state it is given
by (Bylicki and Nicolaides, 2002; Haritoset al., 2001; Mercouriset al., 2001;
Mercouris and Nicolaides, 1990, 2001; Nicolaideset al., 1981, 1990; Nicolaides
and Beck, 1977a,b, 1978a,b; Nicolaides and Gotsis, 1992; Nicolaides and
Mercouris, 1985; Nicolaids and Themelis, 1992; Themelis and Nicolaides, 2000,
2001).

9(r, ρ∗) = α(θ )90(r )+
∑

n

β(θ )un(r, ρ∗), (27)

where ρ∗ = rei θ , and 9(r, ρ∗) is square-integrable. The complex functions
un(r, ρ∗) are products of basis functions with real coordinates for the bound part
of the channel and with complex coordinates for the outgoing particle in that chan-
nel. It is important to emphasize here that it is the use of forms (26) and (27) that has
made the solution of difficult many-body problems with resonance states possible.
For coupled states,90 is replaced by a sum over the corresponding wave functions.

Finally, as regards the theoretical foundations, a conclusion from the contents
of the above subsection can perhaps be summarized by quoting from the 1978
paper (Nicolaides and Beck, 1978a):In general, the mathematical properties of
resonance states are maniifestations of non self-adjoint systems due to the radiation
boundary conditions with complex energies. Such systems can be treated in terms
of biorthogonal expansions, i.e., with the use of adjoint functions. In such cases,
the norm can be defined over both direct and adjoint spaces. As the resonant state
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tends to a bound state, the two spaces merge into one, the Hilbert space, where
the norm is defined as in the textbooks.

4. A COMMENT ON RESONANCE STATE-LIKE FORMS
AND COMPUTATION

According to the previous discussion, the crucial element in the conceptual
and computational framework for a theory of resonance states is the possibility
of establishing the existence of a localized square-integrable90 containing the
information from all the interactions creating stability and leaving out the con-
tribution of the part of function space causing fragmentation (Nicolaides, 1972;
Nicolaides and Beck, 1977a,b, 1978a,b; Bylicki and Nicolaides, 2002; Nicolaides
and Mercouris, 1996; Mercouris and Nicolaides, 1977, 2000). Consequences of
using (90, E0) as the origin are the computationally practical resonance wave func-
tion forms of Eqs. (26) and (27). A similar to (27) form, including photon states, is
used when treating as a resonance problem themany-electron, many-photonprob-
lem, for which the reader is referred to Mercouris and Nicolaides, 1990, 2001.
Except for cases of calculation of partial widths to all orders, a nearly equivalent
formulation of the quest for the computation of resonance states as complex eigen-
value problems is achieved and facilitated by using non Hermitian Hamiltonians
consisting of two parts, one real and one complex. This physically meaningful and
economic approach was emphasized in Nicolaides and Beck, 1978b. The real part,
H0, produces via diagonalization in Hilbert space the real energyE0. When the
complex part is added, the function space corresponding toH0 need not be recalcu-
lated. Optimization for the complex eigenvalue calculation can be done in terms of
the additional space ofL2 functions on which the complex part of the Hamiltoni-
ans is projected. Two Hamiltonians of the aforementioned form were suggested in
Nicolaides and Beck, 1978b. The first emerges naturally from the formal treatment
of decaying states. Its form was written as (Eq. 3.51 of Nicolaides and Beck, 1978b)

M(z) = H0+ A(z) (28)

whereA(z) is the self-energy operator (Goldberger and Watson, 1964; Nicolaides
and Beck, 1977a,b, 1978a,b). The position and the width of the resonance are
given by the complex eigenvalue ofM(z) for which the imaginary part is negative
and the vector is closest to90. The second Hamiltonian form refers to the scaled
Hamiltonian H (θ ) (Aguilar and Combes, 1972; Balslev and Combes, 1972;
Dykhne and Chaplik, 1961; Moiseyev, 1998) and is written as (Eq. 5.26 of
Nicolaides and Beck, 1978b)

H (θ ) = (T + V)+ [(e−2i θ − 1)T + (e−i θ − 1)V ] ≡ H (0)+ V(θ ) (29)

whereT is the kinetic energy operatorV is the local potential for the nucleus–
electron and electron–electron interactions andθ is the angle of coordinate
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rotation. By comparing the forms of Eqs. (28) and (29) we see that the complex
partV(θ ) corresponds to the non Hermitian self-erergy matrixA(z).

5. ON THE EXISTENCE AND CALCUATION OF THE
LOCALIZED WAVE FUNCTION Ψ0, REPRESENTING
THE NON STATIONARY STATE AT t = 0

The essential element in the theory of resonance states is the presence of
90 whose energyE0 is embedded in the continuous spectrum of scattering states
with which90 interacts. However, although the phenomenology resulting from
resonance scattering theory or from decaying state theory is satisfied by the mere
adoption of any bound wave function90, two important questions remain

(i) Is there a physically realized90? This would imply the momentary
formation of a localized (square-integrable) wave packet which is
practically decoupled from the excitation mechanism and where all the
interactions of the Hamiltonian act, but which is non stationary due to its
coupling with, and dissipation into, the continuum. Obviously, the longer
the lifetime compared to the collision (production) time the better90

can be understood conceptually. Furthermore, the deeper the binding po-
tential, the easier it is to compute90 for multielectron states (Nicolaides
et al., 1993; Nicolaides and Piangos, 2001). For an artificial one-particle
system, say the barrier penetration model of alpha particle decay, it is
indeed possible to choose a potential for which a90 can be computed
exactly, analytically or numerically. However, for real polyelectronic
systems it is impossible to write out explicitly the potential responsible
for the formation of90. Therefore, for most physically relevant systems
the above question is challenging. Among other things, it was raised and
discussed in the work on atomic systems cited here. Physical as well
as formal arguments have been given in favor of the existence of90 as
a maximum but finite localized projection out of the exact (complex)
resonance eigenfunction, for which the variance〈90|(H − 〈H〉)2|90〉 is
minimum. This variance, namedstationarity coefficientin Mercouris and
Nicolaides, 2002, is the coefficient of thet2 term in the small-t series
expansion of the time-dependent survival probability,P(t) = |G(t)|2.
WhenP(t) was computed from first principles via the numerical solution
of the time-dependent Schr¨odinger equation (TDSE) for polyelectronic
non stationary atomic states, it was found that the short-time, preex-
ponential decay regime is dominated by thet2 term (Mercouris and
Nicolaides, 2002).

(ii) How can one define systematically and compute90 for a real polyelec-
tronic atom? Since the exact Hamiltonian,H , of an N-electron atom is
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given by the sum of one- and two-electron operators, and since, for a
given symmetry,H has only a continuous spectrum above the first ion-
ization threshold, it is impossible to write an explicit form of a local
operator of which90 is an eigenfunction. In other words, the standard
formal separation of the Hamiltonian operator,H = H0+ V , which is
necessary for the mathematical treatment of discrete states embedded
in the continuum, is not accompanied by explicit forms for the opera-
tors corresponding toH0 or V . (In fact, H0 andV are effective matrix
operators, constructed by projecting onto appropriate function spaces).
For example, a mathematical device that has often been used in the lit-
erature is to assume that theinteraction is turned offand that90 is the
eigenfunction of a fictitious interactionless Hamiltonian,H0. The cou-
pling operator for the interactions is then allowed to enter and to produce
the off-diagonal coupling matrix elements. However, this artificial device
cannot be physically or computationally justified, since the presence of
the interelectronic interactions is continuous. (This concept is acceptable
when the interaction is induced by the sudden introduction of an external
perturbation, such as the application of an electromagnetic field).

The question stated above has been addressed consistently in a series of our pub-
lications reporting practical calculations on a variety of resonance states, starting
with Nicolaides 1972. For atoms, the shell structure, state-specific multiconfig-
urational Hartree–Fock theory as well as the virial theorem have been used as
practical criteria. The energyE0 is found as a local minimum inside the contin-
uous spectrum. The minimization of the variance,〈90|(H − 〈H〉)2|90, has also
been used. An additional criterion is given below: the interpretation of90 as a
wave packet localized att = 0 is discussed in Section 5C of Nicolaides and Beck,
1978b. Starting with a superposition of outgoing waves with complex coefficients,
a(ε), and writing

9(r , t) =
∫

a(ε) exp(−i εt)φ(r ; ε)dε (30)

where

φ(r ; ε) = constant× exp(ikr ), k = (2E)1/2 (31)

and

a(ε) =
∫

exp(i εt) exp(−i z0t)dt = i (ε − z0)−1, z0 = Er − i

2
0 (32)

it is shown that9(r , t) has no outgoing component if the position,r , of the emitted
particle satisfiesr < t (2Er )1/2. Given the recent analysis on the stationarity coeffi-
cients1E, Mercouris and Nicolaides (2002), I take as a reasonable estimate for the
durationt to be 1/(1E)1/2. Therefore, a useful heuristic criterion of localization
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is that

extent of90 < (2E0/(1E)1/2 (33)

In the next section I focus on the time-evolution of90(t), with initial condition
9(0)= 90.

6. NONEXPONENTIAL DECAY AND TIME-ASYMMETRY

The celebrated law of exponential decay results from Eqs. (3) and (9) if two
approximations are made:

1. The functions0(E) and1(E) are assumed to have a very weak energy de-
pendence, so that0(E) ≈ 0(E0) and1(E) ≈ 1(E0), since the resonance
occurs aroundE0. Then the distribution of Eq. (3) is Lorentzian. Ab initio
calculations of interaction matrix elements and ofg(E) for polyelectronic
atomic resonance states were carried out for the first time in Mercouris
and Nicolaides, 1997, 2002; Nicolaides, and Mercouris, 1996.

2. The lower limit of the integral in Eq. (9) is taken to be−∞ instead of
0. A mathematical proof thatG(t) of Eq. (9) cannot decay exponentially
if there is a lower bound, regardless of the form ofg(E), was given in
Khalfin 1958, Nicolaides and Beck, 1978b.

The concept, which is also a measurable quantity, that is related to exponential
decay (ED) is the lifetime, defined byτ = 1/0(h = 1). However, as it was demon-
strated from the numerical solution of the TDSE (Mercouris and Nicolaides, 1997,
2002; Nicolaides and Mercouris, 1996), for certain states which were chosen be-
cause of their proximity to threshold, there is long-time deviation from ED after
only a few exponential lifetimes. Therefore, a better definition of the lifetime is

〈t〉 = τ̄ =
∫

0 t P(t)dt∫
0 P(t)dt

(34)

where P(t) is the survival probability obtained by solving exactly the TDSE.
Eq. (34) implies thatP(t) can also be interpreted as expressing the probability for
a measurement to reveal that a length of timet has elapsed after the preparation
of 90 at t = 0. Mercouris and Nicolaides (1997) demonstrated from ab initio
calculations that in exceptional cases of atomic decaying states,〈t〉 of Eq. (34)
differs fromτ .

Although g(E) is a physically meaningful quantity, its presence in Eq. (9)
does not reveal the subtleties oftime-asymmetrythat the quantum system follows.
When the system is treated in terms of Eq. (6) and of the correspondingg(E) and
G(t), (Eq. 9), unitarity is satisfied and the physics is time-symmetric. However,
departure from the real axis and from Eq. (6), effected by imposing physically
meaningful constraints, such as causality and appropriate boundary conditions,
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turns the physics into non Hermitian and non unitary. This happens when the
concept of a decaying state is adopted implying the discontinuity att = 0 on the
solution of the TDSE. If we write for the time evolution operatorT(t) = e−i Ht ,
then Hermitian quantum mechanics implies that its use is valid fort > 0 as well as
for t < 0. This is equivalent to closing the contour over the cut of the continuous
spectrum in both directions, counter clockwise (Goldberger and Watson, 1964;
Nicolaides and Beck, 1978b). However, as the breakdown of the density g(E) into
the two Green’s functions (Eq. (21)) shows, when only thet > 0 (or only thet < 0)
direction is required, only half of the contour over the sepctrum of stationary states
must be considered, in conjunction with the fact that the continuous spectrum starts
from E = 0. In this case, the energy distribution is given by only one of the Green’s
functions and is, therefore, complex. Correspondingly, using the property of the
step function,θ (t)+ θ (−t) = 1, T(t) is split into two parts,T+ andT−, and the
case of decay, wheret ≥ 0, is described rigorously by the TDSE forT+, as

(i ∂t − H )T+(t) = i δ(t) (35)

Thus, the physics involving each of the dual spaces and each of the Green’s
functions representing mutually time-reversed states, leads to time-asymmetric
evolution from the pointt = 0. It is perhaps needless to add that these observa-
tions are in harmony with the previously analyzed solution of the resonance state
problem under Fano boundary conditions (standing wave) and under traveling
boundary conditions, as well as with the wave packet description connected to
Eqs. (30)–(32).

In calculating the propagatorG(t), whether the realg(E) is used or the com-
plex Green’s functionG+(E), the decay is driven by the same pole,z0. For both
cases, the main result is exponential decay. However, the effect of time-asymmetry,
as defined here, is revealed in the, as yet, undetectable long-time nonexponen-
tial decay (NED) part. This argument was made in Nicolaides and Beck, 1977,
1978b. Since then, a few related results have been published, and so I return to the
issue.

For the sake of the argument it suffices to consider the approximation of the
Lorentzian, namely that the energy dependence ofg(E) and ofG+(E) is simple and
so these functions are determined by choosing0(E) ≈ 0(E0) and1(E) ≈ 1(E0).
Let us considerg(E) first. When the limits of integration are put explicitly, Eq. (9)
is written as

G(t) =
∫ ∞

0
dEg(E)e−i Et (36)

Assuming a Lorentzian distribution, this integral was first done by Khalfin (1958),
in his discussion of NED. The same integral with a different distribution was
discussed at the same time by H¨ohler (1958). Since then, a large number of pub-
lications have been devoted to this problem, having as common characteristic the
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assumption of a particular form forg(E) and the production of analytical results
concerning deviations from the law of exponential decay. In fact, the essential
recognition of the breakdown of this law for long times was formally discussed
for the first time in 1953 in the context of radiation damping by Hellund (1953)
and by Namiki and Mugibayashi (1953).

The integral (36) using the approximation0(E) ≈ 0(E0) and1(E) ≈ 1(E0)
was also done by Nicolaides and Beck by a different method (Eq. 8.54 of Nicolaides
and Beck, 1978b- the misprint is corrected here). The object of that work was not
just mathematical manipulations concerning the calculation ofG(t). Instead, it
aimed at showing two things: First, that for NED to acquire significant magnitude,
one has to look for special cases very close to threshold. Second, that not only
the lower bound in the energy must be accounted for, but also the discontinuity
at t = 0. The latter constraint implies the use of a complex energy distribution
connected to only one pole. When the integral (36) is calculated, the lowest order
long-time NED correction toP(t), after the oscillating terms are eliminated, is
(Nicolaides and Beck, 1978b)

PNED(→∞) ≈ h202

4π2
(

E2+ 02

4

)2
t2

(37)

This result represents two cases, expressing an intrinsic symmetry in the physics
of resonance states: Sinceg(E) is real, the spectrum ofH , as defined by Her-
mitian quantum mechanics, is enclosed, and two poles (the time-reversed states)
contribute toG(t). The same result is obtained if only one part ofg(E) is used,
namelydG+(E), and the integration is taken (unphysically) fromE = −∞ to+∞
(Nicolaides and Beck, 1978b).

When the constraintst = 0 andE = 0 are imposed, then the following result
is obtained (Nicolaides and Beck, 1977, 1978b).

G(t) = 1

2π i

∮
exp(−i zt)

z− z0
dz= exp(−z0t)

[
1− 1

2π i
E1(−i z0t)

]
(38)

whereE1(x), is the exponential function. By taking the first term of the asymptotic
form of E1(x), the result is

PNED(t →∞) ≈ h2

π2
(

E2+ 02

4

)
t2

(39)

Objections to this result were raised in Druger and Samuel (1984) and Sluis and
Gislason (1991). However, these objections did not consider the fact of the imposed
boundary conditions oft ≥ 0 and∞ > E > 0, and therefore the contribution
of both poles was included in the analysis of Druger and Samuel (1984) and
Sluis and Gislason (1991). (The result of Sluis and Gislason (Gislason, 1991) is
obtained from the Lorentzian with 0< E < ∞, and therefore it is Eq. (37)). In
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this respect, it is significant to observe that exactly the same result as Eq. (39)
was later obtained by Holstein (Holstein, 1983) in his treatment of a realistic
model of alpha particle decay using path integral techniques (Eq. 29 of Holstein,
1983), although his attention was not on the issues discussed here. In the path
integral formulation, the direction (x1, t1)→ (x2, t2), t2 > t1, comes in naturally,
and therefore the correspondingG(t) incorporates only thet > 0 contribution. For
the path integral treatment of a general tunneling potential, see Douvropoulos and
Nicolaides (2002).

Although the results (37) and (39) are specific to the simple pole approx-
imation resulting from the approximationA(z) ≈ A(E0), it is the fact that they
are different that has value regarding the understanding of time-asymmetry at the
microscopic level. If, in the future, it becomes possible to measure with great ac-
curacy the NED of an isolated unstable state, for which accurate calculations of
the same quantity could also exist within the two frameworks discussed in this pa-
per, significant information as to the physical relevance of long-time NED should
emerge. A proposal for an experiment in Atomic physics is presented in Mercouris
and Nicolaides, 2002.

7. THE SOLUTION OF THE TDSE FROM FIRST PRINCIPLES,
FOR ATOMIC RESONANCE STATES

Until the 1990s, the time-dependent problem of decaying states was treated
by methods of analysis, via models, and via assumptions or definitions. In a se-
ries of papers, Mercouris and Nicolaides (Mercouris and Nicolaides, 1997, 2002;
Nicolaides and Mercouris, 1996) demonstrated how the time-evolution of poly-
electronic non stationary states decaying into the continuous spectrum of free
electrons can be calculated from first principles. By expanding the time-dependent
wave function into very large sets of state-specific bound9n and scatteringU (ε)
(energy-normalized) wave functions, the TDSE is transformed into a system of
coupled integrodifferential equations of the form

i
d

dt
αn(t) + i

∫
d

dt
b(ε, t)Sn(ε)dε = Enαn(t)

+
∫ ∞

0
b(ε, t)Vn(ε)dε n = 0, 1,. . . , N

i
d

dt
b(ε, t) + i

N∑
m=0

d

dt
αm(t)Sm(ε)dε

= (Eth+ ε)b(ε, t)+
N∑

m=0

αm(t)Vm(ε) (40)
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The overlap,Sn(ε), and interaction,Vn(ε), matrix elements are given by

Sn(ε) = 〈9n|U (ε)〉, Vn(ε) = 〈9n|U (ε)〉. (41)

The integrals in Eq. (40) are performed by the trapezoidal rule and the solution
for the coefficients is tested for convergence with respect to two parameters: The
number of scattering states and the extent of the continuous spectrum. The time-
dependent coefficients are advanced in time via the Taylor series expansion tech-
nique (Mercouris and Nicolaides, 1997, 2002; Nicolaides and Mercouris, 1996)
that has proven efficient in solving systems of tens of thousands of coupled equa-
tions, regardless of the number of electrons of the initial state.

The results of (Mercouris and Nicolaides, 1997, 2002; Nicolaides and
Mercouris, 1996) indicated that indeed there exist states close to threshold where
long-time NED is enhanced. Furthermore, a variety of results for thet ≈ 0 region
were obtained and analyzed. The efficiency of other methods for solving the
TDSE for such resonance states are discussed in those works (Mercouris and
Nicolaides, 1997, 2002; Nicolaides and Mercouris, 1996).

8. CONCLUSION

The conventional development of nonrelativistic quantum mechanics has been
based on Hermitian formulations, involving stationary states and transition am-
plitudes. Both the time-independent and time-dependent formalisms constituting
this framework require unitarity and time-reversibility as the parameter of time
extends from−∞ to∞.

On the other hand, when a particular process evolves through an excited (un-
stable) state, this state must be thought of as a mixture of a localized wave function
with some type of a purely continuous spectrum. For example, this occurs when
excited states interact with the electromagnetic field and decay spontaneously, or
when unstable states are mixed with states of the continuous spectrum of their
own, field-free Hamiltonian, as do auto-detaching states of Atomic Physics. If the
lifetime (Eq. 34) of the nonstationary state is much larger than the duration of
excitation, the concept of a decaying state as a physical entity independent of the
excitation mechanism becomes valid. Prerequisite to the formation of a decay-
ing state, regardless of the formalism used for the determination of its properties,
is the creation att = 0 of a localized nonstationary wave packet,90, inside the
continuous spectrum. (Obviously, there must be cases where the borderline of the
decoupling of the nonstationary state from the excitation dynamics is fuzzy.) For
real polyelectronic systems, once this90 has been computed it is possible to solve
the time-dependent Schr¨odinger equation (TDSE) using state-specific wave func-
tions (Mercouris and Nicolaides, 1997, 2002; Nicolaides and Mercouris, 1996).

Decaying states give rise to resonance phenomena inside the continuous spec-
trum. A rigorous and computationally implementable approach to the description
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of such phenomena on the real axis is the theory of Fano (1961), which is based
on time-independent Hermitian quantum mechanics and standing waves (i.e. real
functions), expressing the mixing of90 with the scattering statesϕ(E). As re-
gards ab initio calculations of observable quantities, these can be done in terms of
well-defined matrix elements and the related basic quantity which is needed is the
multichannelK -matrix. In fact, its proper use and the implementation of methods
based on polyelectronic wave functions have provided a unified treatment of the
discrete and the continuous spectrum.6

On the other hand, aspects of resonance phenomena can also be understood
within a time-independent framework in terms of states represented by complex
eigenfunctions of a complex eigenvalue Schr¨odinger equation (CESE). This equa-
tion and these eigenfunctions (Eq. (16)) were derived here and in (Nicolaides
et al., 1981; Nicolaides and Themelis, 1992), by considering the mixing of90

with ϕ(E) under boundary conditions either of outgoing or of incoming waves.
Their explicit forms and the possibility of normalization by expressions such
as Eqs. (26) and (27) have been used for the calculation of various types of
field-free and field-dressed resonance states in terms of non Hermitian con-
struction (Bylicki and Nicolaides, 2002; Haritoset al., 2001; Mercouriset al.,
2001; Mercouris and Nicolaides, 1990, 2001; Nicolaideset al., 1981, 1990;
Nicolaides and Beck, 1977a,b, 1978a,b; Nicolaides and Gotsis, 1992; Nicolaides
and Mercouris, 1985; Nicolaids and Themelis, 1992; Themelis and Nicolaides,
2000, 2001).

The dichotomy of one real-energy Schr¨odinger equation, with the boundary
conditions of a standing wave with real energies and real wave functions, to two
CESEs, one with outgoing and one with incoming wave as boundary conditions,
is equivalent to the extraction of two complex eigenvalues and corresponding
eigenvectors from the diagonalization of the non Hermitian matrixH0+ A(z),
defined in Section 4. It also expresses the fact that the creation of the decaying state
implies a singularity in the solution of the TDSE att = 0. Only if both solutions,
representing time-reversed states, are considered together, does one obtain results
equivalent to the Hermitian treatment with real energy distribution functions,g(E).
If, however, one imposes the physical restriction of keeping only one solution
corresponding tot ≥ 0, i.e., the complex vector with the complex eigenvalue
z0, representing the decaying state, then the time-dependence at the microscopic
level is driven by a complex energy distribution, namely by the Green’s function

6 Even though in the discussions on resonance states the emphasis has been onS-matrix-type theories,
the use ofK -matrix type formalism, with its Hermitian structure, can have advantages. For example,
for real multiparticle systems, such as the polyelectronic atoms, where scattering theory must be
combined with the particularities of the many-body problem, it is possible to unite, formally and
computationally, within theK -matrix formalism, properties of the discrete and of the continuous
spectrum, using basis sets of bound and scattering functions. (Komninoset al., 1995; Komninos and
Nicolaides, 1987; Sinaniset al., 1998).
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dG+(E), whose main feature, upon analytic continuation through the cut, is the
pole atz0. This pole is the same as the one of the correspondingg(E), and so there is
no difference if the state is defined exclusively by its exponential decay. However,
the contribution to the survival probability from the path along the imaginary axis
is different in the two cases, leading to different long-time nonexponential decays,
(Nicolaides and Beck, 1977, 1978b) and Eqs. (37) and (39). In other words, one
of the arguments of this paper is that for time-asymmetry to be accounted for
at the quantum level it is necessary to utilize complex functions. Furthermore,
for isolated states, the difference between the mathematics of time-symmetric
evolution and of time-asymmetric one is detectable in the regime of long-time
NED, which is where the results using a real energy distribution differ from those
of the corresponding complex distribution with the same pole. Such NED has
its origin in the lower energy bound of the continuous spectrum and, therefore,
becomes physically significant only in special cases, namely for unstable states
that are very close to threshold (Mercouris and Nicolaides, 1997, 2002; Nicolaides
and Beck, 1977, 1978b; Nicolaides and Mercouris, 1996).

I close by pointing out that the issues of complex functions and eigen-
values, time-asymmetry and microscopic irreversibility have been, and are be-
ing discussed by a number of researchers. For example, such discussions
have been given in recent years by research groups at the Universities of
Brussels, Belgium, and of Austin, USA. Characteristic review articles can
be found in the 1997 volume edited by Prigogine and Rice (1997). Addi-
tional relevant articles in the same spirit are by Bohm and Gadella (1993)
on mathematical aspects of Gamow states and on time asymmetric quantum
mechanics - see also Bohm’s book (Bohm, 1993) -, and by Antoniou and
Tasaki with their coworkers (Antoniouet al., 1997; Antoniou and Tasaki,
1993).
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